Nayteikkuna

Kitaravahvistinta matkiva tekoäly sai kuulijat lankaan

Tutkijat mallinsivat sähkökitaran vahvistimen ääntä neuroverkon avulla niin hyvin, etteivät kuulijat erottaneet tietokoneen luomaa ääntä aidosta.

 

Akustiikan tutkijat kouluttivat neuroverkon jäljittelemään kitaravahvistinta. Kuvassa kitaraäänen testausta Aalto-yliopiston akustiikan laboratorion kauittomassa huoneessa.
Painavat ja kalliit kitaravahvistimet voivat jäädä pian tarpeettomiksi. Aalto-yliopiston akustiikan tutkijat onnistuivat jäljittelemään syväoppivan neuroverkon avulla kitarasäröä niin hyvin, että suuri osa kuulijoista ei erottanut aitoja ja mallinnettuja ääniä toisistaan.

Kitaravahvistin on laite, joka vahvistaa sähkökitaran tuottaman äänen. Sen avulla voidaan tuottaa rockmusiikissa suosittua kitarasäröä eli äänen säröytymistä. Syvät neuroverkot ovat ihmisaivojen toimintaa jäljitteleviä koneoppimismenetelmiä. Ne on suunniteltu oppimaan niille syötetystä aineistosta säännönmukaisuuksia ja tuottamaan haluttu tulos, tässä tapauksessa äänen muokkaus.

Koehenkilöt saivat kuunneltavakseen aidoilla kitaravahvistimilla sekä erilaisilla ja erikokoisilla neuroverkoilla tuotettuja ääninäytteitä.

”Neuroverkkoja on käytetty kitarasärön mallinnukseen aiemminkin, mutta tämä on ensimmäinen kerta, kun koehenkilöt eivät huomanneet kuuntelukokeissa eroa äänityksen ja mallinnetun kitarasärön välillä. Tätä voisi verrata tilanteeseen, kun tietokone oppi ensimmäistä kertaa pelaamaan shakkia”, sanoo professori Vesa Välimäki Aalto-yliopiston akustiikan laboratoriosta.

Neuroverkolle syötettiin muutaman minuutin mittaisia prosessoimattomia kitaraäänitteitä sekä vahvistimen säröyttämiä äänitteitä, joiden perusteella ne oppivat jäljittelemään vahvistimien ääntä. Tutkimuksessa käytettiin WaveNet-neuroverkkoa. Käytetyt vahvistinmallit olivat Blackstar HT5 Metal ja Mesa Boogie Express 5: 50 Plus -putkivahvistimia.

 

Suorituskykyä reaaliajassa

Monet kitaravahvistimet perustuvat analogisiin piireihin, joissa käytetään äänen särön tuottamiseksi yleensä tyhjiöputkia tai transistoreita. Samalla kun musiikin tuotanto digitalisoituu, kysyntä suurten, kalliiden ja särkyvien analogisten laitteiden digitaalisille korvaajille kasvaa.

Kitaravahvistimen analoginen piiri voidaan simuloida tarkasti mallintamalla sen komponentit. Näin saadut mallit vaativat kuitenkin usein liikaa laskentatehoa, jotta niillä voidaan käsitellä ääntä reaaliaikaisesti. Lisäksi jokaiselle vahvistimelle on luotava manuaalisesti uusi malli.

Neuroverkoilla haluttu lopputulos voidaan saavuttaa huomattavasti ketterämmin, ja mallit eivät vaadi suurta laskentatehoa. Kaikki mahdolliset kitaravahvistimet voidaan mallintaa samalla periaatteella eli syöttämällä verkolle äänidataa.

”Keskityimme mallien luomisessa niiden suorituskykyyn. Malleja voidaan ajaa reaaliajassa tavallisella tietokoneella”, sanoo syväoppimiseen ja äänenkäsittelyyn erikoistunut tohtorikoulutettava Alec Wright.

Lähitulevaisuudessa kitaristi siis voi vain kytkeä soittimensa läppäriin ja kaiuttimista kajahtaa täysin vakuuttava vahvistinääni, tutkijat arvelevat.

 

Kuva: Mikko Raskinen / Aalto-yliopisto

 

12.02.2020
|
Riffi
Tekninen toteutus: Sitebuilders Finland Oy